Radiace kolem nás: Porovnání verzí
Řádek 55: | Řádek 55: | ||
[[Soubor:Smolinec_kolaz_web.jpg|center|thumb|600px|frame| Ukázka smolince, vlevo celý vzorek, vpravo detail “ledvinek” smolince]] | [[Soubor:Smolinec_kolaz_web.jpg|center|thumb|600px|frame| Ukázka smolince, vlevo celý vzorek, vpravo detail “ledvinek” smolince]] | ||
[[Soubor:Wiki-varovani.png|30px]] | |||
'''Upozornění:''' vzorky (minerály, půdy nebo předměty), jejichž radioaktivitu chcete zjistit, vložte raději před měřením do plastového sáčku, abyste přístroj chránili před možným znečištěním. | '''Upozornění:''' vzorky (minerály, půdy nebo předměty), jejichž radioaktivitu chcete zjistit, vložte raději před měřením do plastového sáčku, abyste přístroj chránili před možným znečištěním. | ||
Verze z 21. 8. 2019, 21:42
Úvod
To, co naměří přístroj Safecast (nebo kterýkoliv jiný běžný radiometr), je výsledná hodnota dávkového příkonu způsobeného zářením gama z různých zdrojů. Jedná se o přírodní zdroje (kosmické záření, záření z horninového podloží nebo záření z přírodních radionuklidů v živých organismech, včetně člověka) a zdroje záření vzniklé v důsledku lidské činnosti (např. záření stavebních materiálů nebo radioaktivních prvků uniklých při jaderných testech nebo haváriích).
Na následujícím obrázku jsou znázorněny zdroje záření gama, které se podílejí na výsledné hodnotě zobrazené na přístroji. (Ačkoliv všechny živé organismy a z nich odvozené materiály obsahují také radioaktivní uhlík 14C, není tento izotop v obrázku uveden. Uhlík 14C není totiž zdrojem záření gama a přístroj Safecast ho proto nedetekuje.)
Jak poznáte z obrázku podle velikosti šipek, mnohé z těchto zdrojů přispívají tak nepatrně, že jejich příspěvek přístroj Safecast vůbec nezaznamená (ukazuje výsledek pouze na 3 desetinná místa), měřené hodnoty jsou navíc ovlivněny přirozeným kolísáním přírodního pozadí, které je způsobeno pravděpodobnostním charakterem radioaktivní přeměny.
Kosmické záření
Kosmické záření k nám proniká skrze atmosféru z kosmického prostoru. Jeho zdrojem jsou různé procesy ve vesmíru, zahrnující výbuchy supernov, záření kvasarů, černých děr atd.
Atmosféra nás před kosmickým zářením stíní - tj. snižuje množství kosmického záření dopadajícího na povrch země. Čím jste výše nad hladinou moře, tím je vrstva atmosféry tenčí a tím více kosmického záření přístroj (např. detektor Safecast) naměří.
Voda záření stíní, dokonce mnohem více než vzduch. Pod vodou by v určité hloubce mohlo být kosmické záření zcela odstíněné. Podobně je tomu pod zemí, tam převažuje záření z horninového podloží.
Na území České republiky se příspěvek kosmického záření pohybuje zhruba v rozmezí 0,03 - 0,07 μSv/h, ale například v dopravním letadle v běžné cestovní výšce kolem 10 km dosahuje hodnot přes 3 μSv/h.
Záření z horninového podloží
Zdrojem radioaktivity hornin jsou přírodní radioaktivní prvky, které jsou v nich obsažené. Největší podíl má radioaktivní izotop draslíku 40K, jehož koncentrace v horninách zemské kůry je několik hmotnostních procent. Dále jsou to izotopy uranu a thoria a produkty jejich přeměny (zahrnuje i radon a jeho dceřiné produkty). Jejich množství v hornině je řádově 10 000x nižší než draslíku, přitom jejich příspěvek k naměřené hodnotě je nižší pouze 10krát.
Pokud je přístroj nad zemí, ukazuje záření z pevného povrchu. Na vodní hladině je mezi přístrojem a horninami na dně vysoký sloupec vody, který záření zeslabuje, a proto je hodnota na přístroji nižší (pro zjednodušení předpokládáme, že horniny zobrazené na obrázku stejnou barvou jsou homogenního složení).
V horninovém podloží ČR je obvyklý příkon záření gama na zemském povrchu v rozsahu od 0,006 do 0,245 μSv/h. Zvýšené hodnoty dávkových příkonů lze nalézt v některých oblastech se žulovým podložím nebo v oblastech bývalých ložisek uranových rud. Nejnižší hodnoty dávkového příkonu se vyskytují v oblastech s vápencovým podložím, mramorem apod.
Hodnoty na přístroji přirozeně kolísají
Pokud bude přístroj měřit delší dobu na stejném místě, naměřené hodnoty budou mírně kolísat - nikdy se nestane, že by přístroj ukazoval stále stejné číslo. Toto kolísání je dáno podstatou radioaktivní přeměny.
Příklady některých volně dostupných materiálů s vyšší radioaktivitou
Smolinec / uraninit UO2
Smolinec, správně zvaný uraninit, má chemický vzorec UO2 (tj. oxid uraničitý), je nejdůležitější rudou uranu a radia. Uran bývá v rudě doprovázen dalšími prvky, jako např. síra, olovo, antimon, arsen.
Upozornění: vzorky (minerály, půdy nebo předměty), jejichž radioaktivitu chcete zjistit, vložte raději před měřením do plastového sáčku, abyste přístroj chránili před možným znečištěním.
V závislosti na velikosti samotného vzorku i množství smolince ve vzorku můžete naměřit různě vysoké hodnoty dávkového příkonu. Zde byl přístroj Safecast přiložen přímo k plastovému sáčku (ten průchodu záření gama nijak nebrání) se vzorkem smolince a naměřený dávkový příkon se pohyboval kolem 170 microSv/h. Takový vzorek není sice bezprostředně zdraví škodlivý, ale rozhodně není vhodné uchovávat jej dlouhodobě např. na pracovním stole, v ložnici nebo na poličce v obývacím pokoji, aby nedocházelo ke zbytečnému ozařování osob.
Na stránce se pracuje - těšit se můžete například na:
Jak je to s radioaktivitou potravin, např. hub
Ozáření ze stavebních materiálů v domech
Příklady některých volně dostupných materiálů s přirozeně vyšší radioaktivitou
- jaké volně a zcela legálně dostupné materiály mají vyšší obsah radioaktivních prvků?
Odkazy
MonRaS - Monitorování radiační situace https://www.sujb.cz/aplikace/monras/?lng=cs_CZ
Kosmické záření http://astronuklfyzika.cz/JadRadFyzika6.htm#KosmickeZareni
Hodnoty pro záření z horninového podloží https://www.suro.cz/cz/faq/jake-hodnoty-davkoveho-prikonu-muzeme-v-cr-ocekavat