Pixelové polovodičové detektory Medipix/Timepix: Porovnání verzí
Bez shrnutí editace |
Bez shrnutí editace |
||
Řádek 7: | Řádek 7: | ||
[[Soubor:Pixelove obr2.png|center|thumb|400px|frame|''Obr. 2: Přenosný systém pixelového detektoru a USB rozhraním. Po připojení detektoru k počítači je možné jej používat jako on-line digitální kameru ionizujícího záření.'']] | [[Soubor:Pixelove obr2.png|center|thumb|400px|frame|''Obr. 2: Přenosný systém pixelového detektoru a USB rozhraním. Po připojení detektoru k počítači je možné jej používat jako on-line digitální kameru ionizujícího záření.'']] | ||
Detektor tedy funguje na principu ionizace v pevné fázi. Vletí-li do citlivé oblasti nabitá částice, její energie se konvertuje na vytvoření řady elektron-děrových párů (střední energie potřebná pro vytvoření jednoho takového páru v křemíku je rovna 3,62 eV). Díky přiloženému předpětí je pak celkový vygenerovaný náboj sebrán na rozpixelovanou elektrodu a příslušným vodivým spojem odveden do elektroniky příslušného pixelu. Zde na pracovním odporu vznikne napěťový impuls, jehož amplituda je úměrná počtu vytvořených elektron – děrových párů, a tedy i energii dopadlé částice. Elektronika detektoru dokáže jednak počítat počet těchto pulsů (verze Medipix2), což odpovídá počtu dopadlých částic, ale i vyhodnocovat amplitudu každého impulsu odpovídající energii detekované částice (verze Timepix). | |||
Druhou část detektoru tvoří vyčítací čip, který pro každou buňku senzoru obsahuje zesilovač, dva diskriminátory, rozhodovací logiku a 13-bitový čítač. Oba čipy jsou pak propojeny sítí kulovitých kontaktů o průměru 20 μm (technologie bump-bonding). Běžné dostupné elektronické detektory IZ jako jsou CCD kamery nebo flat panely (používají se např. pro rentgenovou radiologii v nemocnicích) jsou založeny na principu integrace náboje. Částice IZ vygeneruje náboj, který je po dobu expozice ve vyčítacích obvodech shromažďován na příslušném kondenzátoru. Po ukončení expozice je tato hodnota analogově vyčíslena. Problémem je, že náboj se může z kondenzátoru v čase ztrácet nebo naopak se na kapacitě integruje veškerý šum elektroniky. Výsledkem je degradace detekovaného signálu projevující se např. v radiografii omezeným dynamickým rozsahem (menší rozlišitelností pozorovaných anatomických struktur). | Druhou část detektoru tvoří vyčítací čip, který pro každou buňku senzoru obsahuje zesilovač, dva diskriminátory, rozhodovací logiku a 13-bitový čítač. Oba čipy jsou pak propojeny sítí kulovitých kontaktů o průměru 20 μm (technologie bump-bonding). Běžné dostupné elektronické detektory IZ jako jsou CCD kamery nebo flat panely (používají se např. pro rentgenovou radiologii v nemocnicích) jsou založeny na principu integrace náboje. Částice IZ vygeneruje náboj, který je po dobu expozice ve vyčítacích obvodech shromažďován na příslušném kondenzátoru. Po ukončení expozice je tato hodnota analogově vyčíslena. Problémem je, že náboj se může z kondenzátoru v čase ztrácet nebo naopak se na kapacitě integruje veškerý šum elektroniky. Výsledkem je degradace detekovaného signálu projevující se např. v radiografii omezeným dynamickým rozsahem (menší rozlišitelností pozorovaných anatomických struktur). | ||
Verze z 14. 8. 2019, 13:58
Hybridní polohově citlivý polovodičový detektor Medipix2 je unikátní detekční systémem ionizujícího záření (IZ) vyvinutý mezinárodní kolaborací výzkumných týmů, jež zastřešuje Evropské centrum jaderného výzkumu CERN. Tento detektor je sestaven ze dvou částí (viz Obr. 1).
První z nich je křemíkový senzor (k dispozici jsou v současnosti i jiné materiály jako např. CdTe, GaAs) o tloušťce v řádu 100 μm, který je ze spodní strany rozdělen na matici 256 x 256 čtvercových buněk o hraně 55 μm. Celková citlivá plocha detektoru má tedy rozměr 14 mm × 14 mm (viz Obr. 2). Senzor je vlastně povrchový p-n přechod (dioda), na který je přivedeno inverzní předpětí. Přiložením tohoto předpětí se v monokrystalu křemíku vytvoří oblast bez prostorového náboje. Tato část polovodiče představuje citlivou oblast detektoru, ve které se po dopadu kvanta ionizujícího záření generuje náboj.
Detektor tedy funguje na principu ionizace v pevné fázi. Vletí-li do citlivé oblasti nabitá částice, její energie se konvertuje na vytvoření řady elektron-děrových párů (střední energie potřebná pro vytvoření jednoho takového páru v křemíku je rovna 3,62 eV). Díky přiloženému předpětí je pak celkový vygenerovaný náboj sebrán na rozpixelovanou elektrodu a příslušným vodivým spojem odveden do elektroniky příslušného pixelu. Zde na pracovním odporu vznikne napěťový impuls, jehož amplituda je úměrná počtu vytvořených elektron – děrových párů, a tedy i energii dopadlé částice. Elektronika detektoru dokáže jednak počítat počet těchto pulsů (verze Medipix2), což odpovídá počtu dopadlých částic, ale i vyhodnocovat amplitudu každého impulsu odpovídající energii detekované částice (verze Timepix).
Druhou část detektoru tvoří vyčítací čip, který pro každou buňku senzoru obsahuje zesilovač, dva diskriminátory, rozhodovací logiku a 13-bitový čítač. Oba čipy jsou pak propojeny sítí kulovitých kontaktů o průměru 20 μm (technologie bump-bonding). Běžné dostupné elektronické detektory IZ jako jsou CCD kamery nebo flat panely (používají se např. pro rentgenovou radiologii v nemocnicích) jsou založeny na principu integrace náboje. Částice IZ vygeneruje náboj, který je po dobu expozice ve vyčítacích obvodech shromažďován na příslušném kondenzátoru. Po ukončení expozice je tato hodnota analogově vyčíslena. Problémem je, že náboj se může z kondenzátoru v čase ztrácet nebo naopak se na kapacitě integruje veškerý šum elektroniky. Výsledkem je degradace detekovaného signálu projevující se např. v radiografii omezeným dynamickým rozsahem (menší rozlišitelností pozorovaných anatomických struktur).
Princip detekce hybridních pixelových detektorů se však liší. Ve vyčítacím čipu nedochází k integraci náboje generovaného příchozí ionizující částicí a vyčíslování této hodnoty. V detektorech typu Medipix2 je získaná hodnota náboje pro každé detekované kvantum v každém pixelu srovnána s jistou diskriminační hladinou (horní a dolní) a pokud tyto relace splní, digitální čítač zaznamená událost (viz. Obr. 3). Medipix2 je tedy maticí zhruba 65000 nezávislých jednokanálových analyzátorů, které mohou měřit nezávisle na sobě. Nová generace těchto detektorů nazvaná Timepix (tato verze je dodána pro školní měření), dovoluje navíc v každém pixelu měřit i energii, nebo čas dopadlé částice (jedná se tedy o matici více než 65000 nezávislých mnohokanálových analyzátorů).